Search This Blog

Tuesday, June 14, 2016

Elon Musk: People Will Probably Die on the First SpaceX Missions to Mars

As reported by IBTimes: Technology entrepreneur Elon Musk is really excited about getting the first humans to land on Mars in 2025 with the view to establishing a colony, but in case you didn't realize this already, he is warning that pioneering a new planet probably won't be much fun.

"It's dangerous and probably people will die – and they'll know that. And then they'll pave the way, and ultimately it will be very safe to go to Mars, and it will be very comfortable. But that will be many years in the future," Musk told the Washington Post in a new interview detailing how the Mission to Mars technical journey is likely to evolve.

Musk's space transportation company SpaceX currently has a $1.6bn contract with Nasa to routinely ferry cargo to and from the International Space Station (ISS). In November 2015, SpaceX received official approval from NASA to send astronauts from the US space agency to the ISS starting from 2017, as currently the only way into space is via Russia.

SpaceX plans to start flying unmanned spacecraft to Mars from 2018 that are timed to occur every two years when Earth and the Red Planet are closest in orbit. The purpose of these missions will be to gather valuable data about descending and landing on Mars for human missions in the future.

There is currently a great deal of interest in the Mission to Mars and organisations like Dutch-based Mars One have galvanized the general public to apply to be the first humans on Mars. The likelihood of this being possible, however, without backing from NASA and the European Space Agency (ESA) is really slim, and some think that Mars One could just be a big scam.

"Essentially what we're saying is we're establishing a cargo route to Mars. It's a regular cargo route. You can count on it. It's going to happen every 26 months. Like a train leaving the station," he said.

"And if scientists around the world know that they can count on that, and it's going to be inexpensive, relatively speaking compared to anything in the past, then they will plan accordingly and come up with a lot of great experiments."

If these autonomous spacecraft flights are successful and are proven to be safe enough for humans, then the first human mission will take place in 2025. However, even when the two planets are at their closest, they are still separated by a distance of 140 million miles and it will take months for the spacecraft to reach Mars.

For the first pioneering humans who decide to leave their lives on Earth behind, Musk admits the journey will likely be "hard, risky, dangerous, difficult" but he points out it is no different to the British who chose to travel across the sea to colonize the Americas in the 1600s.

"Just as with the establishment of the English colonies, there are people who love that. They want to be the pioneers," he said.

Friday, June 10, 2016

V2X - Qualcomm’s Connected Car Reference Platform Aims to Connect Smart Cars to Everything

As reported by NetworkWorld: With 200 to 300 microcontrollers and microprocessors in the typical automobile, cars are already pretty smart. And Google’s and Tesla’s continued development, as well as auto manufacturers’ R&D investments in preparation of autonomous cars, indicate cars are about to get much smarter.

That increased intelligence means vehicles will have more silicon devices that are more integrated, with more densely packed circuitry. Functional modules, such as control systems, infotainment, and autonomous steering and braking, multiply the number of chips per car that semiconductor manufacturers can sell into each car.

To fill the gap between the connectivity capabilities of today’s cars and the complex connectivity in next-generation cars, Qualcomm today announced its Connected Car Reference Platform intended for the car industry to use to build prototypes of the next-generation connected car. Every category from economy to luxury car will be much smarter than the connected luxury car of today, creating a big opportunity for Qualcomm to supply semiconductors to automakers and suppliers.

Connected cars require faster, more-complex connectivity

Connectivity becomes more complex as infotainment experiences become richer and cars become semi-autonomous cars like the Tesla S or fully autonomous like Google’s vehicle. Frank Fitzek, chief of Germany’s 5G Lab, explained to me in February how autonomous cars will need ultra-low-latency, fast 5G network connectivity.

Connected car network speeds will have to get faster because consumer expectations for connectivity in the autonomous era will be the same in a car as at home. Passengers will connect mobile devices with one another and infotainment systems to collaboratively work, play games, cast streamed music and video to car stereos and displays, as well as communicate with the world beyond the car interior.

If this sounds futuristic, go rent or borrow a 2016 model luxury car from Audi, Honda, or Mercedes or a Tesla S and you will experience excellent connectivity and smartphone integration. Connectivity and options in the next generation will be substantially better.

Autonomous steering and collision avoidance features were not announced. Onboard specialized processors, in addition to the capabilities announced today, will be necessary for autonomous driving. It’s not difficult to imagine that Qualcomm will apply its machine learning SDK, announced just a few weeks ago, and the Snapdragon 820 processor to meet those needs.

Collision avoidance, though, requires a lot of communications with onboard car sensors and cameras—and with a local cloud of Wi-Fi and V2X. V2X, sometimes referred to as vehicle-to-everything, incorporates V2I (Vehicle to Infrastructure), V2V (Vehicle to Vehicle), V2P (Vehicle to Pedestrian), V2D (Vehicle to Device) and V2G (Vehicle to Grid). Much of the collision avoidance systems will operate using a local cloud, but safely coordinating cars in heavy traffic travelling at 70 mph or on the Autobahn at 120 mph will require ultra-low latency, fast 5G.

Features of the Connected Car Reference Platform

Qualcomm described the following features of the Connected Car Reference Platform in its release:
  • Scalability: Using a common framework that scales from a basic telematics control unit (TCU) up to a highly integrated wireless gateway, connecting multiple electronic control units (ECUs) within the car and supporting critical functions, such as over-the-air software upgrades and data collection and analytics.
  • Future-proofing: Allowing the vehicle’s connectivity hardware and software to be upgraded through its life cycle, providing automakers with a migration path from Dedicated Short Range Communications (DSRC) to hybrid/cellular V2X and from 4G LTE to 5G.
  • Wireless coexistence: Managing concurrent operation of multiple wireless technologies using the same spectrum frequencies, such as Wi-Fi, Bluetooth and Bluetooth Low Energy.
  • OEM and third-party applications support: Providing a secure framework for the development and execution of custom applications.
There are a few interesting points about those features. Qualcomm is attempting to solve a difficult problem for automakers: over-the-air software updates. Updating software on a mission-critical system such as an autonomous car is a much harder problem than updating a smartphone because it has to be completely secure and work every time without reducing safety. But Qualcomm has to solve this problem anyway to accelerate shipments not only to the car market but to the IoT market, where it hopes to sell tens of billions of chips.

Keeping up with connectivity improvements

One of the inconsistencies between building cars and building smartphones is the average car has a 12-year useful life, and a smartphone has just a couple of years. Smartphone connectivity improves with each design iteration, posing the problem that its network speeds will almost always be faster than what is installed in the car. Unless the car network is future-proofed, consumers will rely on their phone’s network rather than the car’s. Qualcomm said there will be a migration from older networks to newer, perhaps offering an upgrade to car network connectivity every two years to match the improvements in smartphones.

Qualcomm is approaching a unified communications system to address infotainment, navigation, autonomous steering and braking, and control systems connected to the control area network (CAN). Autonomous steering and braking, navigation, and control systems must be connected, but automakers have resisted combining the CAN bus with infotainment systems because it increases the attack surface that could be exploited by a criminal hacker. Qualcomm claims their design is secure, but it can expect to be asked by safety engineers to prove it.

Qualcomm says it expects to ship the Connected Car Reference Platform to automakers, tier 1 auto suppliers and developers late this year.

Tesla Knows When a Crash is Your Fault

As reported by Washington PostEvery day, our cars are becoming smarter and more connected. This may someday save your life in a crash, or prevent one altogether — but it also makes it far harder to evade blame when you're the cause of a fender-bender.

One Tesla owner appears to be finding that out firsthand as he struggles to convince the luxury automaker his wife wasn't the one who crashed his Model X. Instead, he complains, the car suddenly accelerated all by itself, jumped the curb and rammed straight into the side of a shopping center.

Tesla is disputing the owner's account of the incident, citing detailed diagnostic logs that show the car's gas pedal suddenly being pressed to the floor in the moments before the collision.
"Consistent with the driver's actions, the vehicle applied torque and accelerated as instructed," Tesla said in a press statement.
At no time did the driver have Tesla's autopilot or cruise control engaged, according to Tesla, which means the car was under manual control — it couldn't have been anyone else but the human who caused the crash. The car uses multiple sensors to double check a driver's accelerator commands.
The Model X owner appears to be standing by his story, but here's the broader takeaway. Cars have reached a level of sophistication in which they can tattle on their own owners, simply by handing over the secrets embedded in the data they already collect about your driving.
Your driving data is extremely powerful: It can tell your mechanic exactly what parts need work. It offers hints about your commute and your lifestyle. And it can help keep you safe, when combined with features such as automatic lane-keeping and crash avoidance systems.
But the potential dark side is that the data can be abused. Maybe a rogue insurance company might look at it and try to raise your premiums. Perhaps it gives automakers an incentive to claim that you, the owner, were at fault for a crash even if you think you weren't. To be clear, that isn't necessarily what's going on with Tesla's Model X owner. But the case offers a window into the kind of issues that drivers will increasingly face as their vehicles become smarter.

Thursday, June 9, 2016

This Deep Space Atomic Clock Is Key for Future Exploration

As reported by TimeWe all intuitively understand the basics of time. Every day we count its passage and use it to schedule our lives.
We also use time to navigate our way to the destinations that matter to us. In school we learned that speed and time will tell us how far we went in traveling from point A to point B; with a map we can pick the most efficient route – simple.
But what if point A is the Earth, and point B is Mars – is it still that simple? Conceptually, yes. But to actually do it we need better tools – much better tools.
At NASA’s Jet Propulsion Laboratory, I’m working to develop one of these tools: the Deep Space Atomic Clock, or DSAC for short. DSAC is a small atomic clock that could be used as part of a spacecraft navigation system. It will improve accuracy and enable new modes of navigation, such as unattended or autonomous.
In its final form, the Deep Space Atomic Clock will be suitable for operations in the solar system well beyond Earth orbit. Our goal is to develop an advanced prototype of DSAC and operate it in space for one year, demonstrating its use for future deep space exploration.
Speed and time tell us distanceTo navigate in deep space, we measure the transit time of a radio signal traveling back and forth between a spacecraft and one of our transmitting antennae on Earth (usually one of NASA’s Deep Space Network complexes located in Goldstone, California; Madrid, Spain; or Canberra, Australia).
We know the signal is traveling at the speed of light, a constant at approximately 300,000 km/sec (186,000 miles/sec). Then, from how long our “two-way” measurement takes to go there and back, we can compute distances and relative speeds for the spacecraft.
For instance, an orbiting satellite at Mars is an average of 250 million kilometers from Earth. The time the radio signal takes to travel there and back (called its two-way light time) is about 28 minutes. We can measure the travel time of the signal and then relate it to the total distance traversed between the Earth tracking antenna and the orbiter to better than a meter, and the orbiter’s relative speed with respect to the antenna to within 0.1 mm/sec.
We collect the distance and relative speed data over time, and when we have a sufficient amount (for a Mars orbiter this is typically two days) we can determine the satellite’s trajectory.
Measuring time, way beyond Swiss precisionFundamental to these precise measurements are atomic clocks. By measuring very stable and precise frequencies of light emitted by certain atoms (examples include hydrogen, cesium, rubidium and, for DSAC, mercury), an atomic clock can regulate the time kept by a more traditional mechanical (quartz crystal) clock. It’s like a tuning fork for timekeeping. The result is a clock system that can be ultra stable over decades.
The precision of the Deep Space Atomic Clock relies on an inherent property of mercury ions – they transition between neighboring energy levels at a frequency of exactly 40.5073479968 GHz. DSAC uses this property to measure the error in a quartz clock’s “tick rate,” and, with this measurement, “steers” it towards a stable rate. DSAC’s resulting stability is on par with ground-based atomic clocks, gaining or losing less than a microsecond per decade.
Continuing with the Mars orbiter example, ground-based atomic clocks at the Deep Space Network error contribution to the orbiter’s two-way light time measurement is on the order of picoseconds, contributing only fractions of a meter to the overall distance error. Likewise, the clocks’ contribution to error in the orbiter’s speed measurement is a minuscule fraction of the overall error (1 micrometer/sec out of the 0.1 mm/sec total).
The distance and speed measurements are collected by the ground stations and sent to teams of navigators who process the data using sophisticated computer models of spacecraft motion. They compute a best-fit trajectory that, for a Mars orbiter, is typically accurate to within 10 meters (about the length of a school bus).
The ground clocks used for these measurements are the size of a refrigerator and operate in carefully controlled environments – definitely not suitable for spaceflight. In comparison, DSAC, even in its current prototype form as seen above, is about the size of a four-slice toaster. By design, it’s able to operate well in the dynamic environment aboard a deep-space exploring craft.
One key to reducing DSAC’s overall size was miniaturizing the mercury ion trap. Shown in the prior figure, it’s about 15 cm (6 inches) in length. The trap confines the plasma of mercury ions using electric fields. Then, by applying magnetic fields and external shielding, we provide a stable environment where the ions are minimally affected by temperature or magnetic variations. This stable environment enables measuring the ions’ transition between energy states very accurately.
The DSAC technology doesn’t really consume anything other than power. All these features together mean we can develop a clock that’s suitable for very long duration space missions.
Because DSAC is as stable as its ground counterparts, spacecraft carrying DSAC would not need to turn signals around to get two-way tracking. Instead, the spacecraft could send the tracking signal to the Earth station or it could receive the signal sent by the Earth station and make the tracking measurement on board. In other words, traditional two-way tracking can be replaced with one-way, measured either on the ground or on board the spacecraft.
So what does this mean for deep space navigation? Broadly speaking, one-way tracking is more flexible, scalable (since it could support more missions without building new antennas) and enables new ways to navigate.
DSAC advances us beyond what’s possible todayThe Deep Space Atomic Clock has the potential to solve a bunch of our current space navigation challenges.
  • Places like Mars are “crowded” with many spacecraft: Right now, there are five orbiters competing for radio tracking. Two-way tracking requires spacecraft to “time-share” the resource. But with one-way tracking, the Deep Space Network could support many spacecraft simultaneously without expanding the network. All that’s needed are capable spacecraft radios coupled with DSAC.
  • With the existing Deep Space Network, one-way tracking can be conducted at a higher-frequency band than current two-way. Doing so improves the precision of the tracking data by upwards of 10 times, producing range rate measurements with only 0.01 mm/sec error.
  • One-way uplink transmissions from the Deep Space Network are very high-powered. They can be received by smaller spacecraft antennas with greater fields of view than the typical high-gain, focused antennas used today for two-way tracking. This change allows the mission to conduct science and exploration activities without interruption while still collecting high-precision data for navigation and science. As an example, use of one-way data with DSAC to determine the gravity field of Europa, an icy moon of Jupiter, can be achieved in a third of the time it would take using traditional two-way methods with the flyby mission currently under development by NASA.
  • Collecting high-precision one-way data on board a spacecraft means the data are available for real-time navigation. Unlike two-way tracking, there is no delay with ground-based data collection and processing. This type of navigation could be crucial for robotic exploration; it would improve accuracy and reliability during critical events – for example, when a spacecraft inserts into orbit around a planet. It’s also important for human exploration, when astronauts will need accurate real-time trajectory information to safely navigate to distant solar system destinations.
Countdown to DSAC launchThe DSAC mission is a hosted payload on the Surrey Satellite Technology Orbital Test Bed spacecraft. Together with the DSAC Demonstration Unit, an ultra stable quartz oscillator and a GPS receiver with antenna will enter low altitude Earth orbit once launched via a SpaceX Falcon Heavy rocket in early 2017.
While it’s on orbit, DSAC’s space-based performance will be measured in a yearlong demonstration, during which Global Positioning System tracking data will be used to determine precise estimates of OTB’s orbit and DSAC’s stability. We’ll also be running a carefully designed experiment to confirm DSAC-based orbit estimates are as accurate or better than those determined from traditional two-way data. This is how we’ll validate DSAC’s utility for deep space one-way radio navigation.
In the late 1700s, navigating the high seas was forever changed by John Harrison’s development of the H4 “sea watch.” H4’s stability enabled seafarers to accurately and reliably determine longitude, which until then had eluded mariners for thousands of years. Today, exploring deep space requires traveling distances that are orders of magnitude greater than the lengths of oceans, and demands tools with ever more precision for safe navigation. DSAC is at the ready to respond to this challenge.The Conversation

Wednesday, June 8, 2016

SpaceX Plans to Relaunch a Used Rocket for the First Time this Fall

As reported by The VergeSpaceX CEO Elon Musk shared a picture of all the rockets the company has landed so far, noting that one of them will re-fly for the first time in September or October. When that happens, SpaceX will finally be able to boast that it has reused one of its Falcon 9 vehicles.
Those target dates are a little later than what Musk had originally suggested, however. After SpaceX's first drone ship landing in April, the CEO said the Falcon 9 rocket could fly again on an orbital mission as early as May or June. It was an ambitious turnaround time for the company, especially since SpaceX is just now figuring out how to put its reusable rocket strategy into practice. Eventually, SpaceX hopes to land and re-fly its rockets within just a few weeks.


Fourth rocket arrives in the hangar. Aiming for first reflight in Sept/Oct.
There's still no word on what the first reused Falcon 9 will do. SpaceX said recently that a number of customers are interested in having their cargo fly on the landed vehicle, according to Space News. In February, a top official from international satellite operator SES said the company was particularly eager to have one of its probes sent to space on a previously landed Falcon 9, according to Spaceflight Now.

Drone Swarms Will Soon Fly Alongside Fighter Jets


As reported by Wireless Design Mag: Right now, the military’s largest unmanned aerial vehicles (UAVs), such as the big, bad Predator and Reaper, are controlled via ground control stations. But according to the U.S. Air Force (USAF) Chief Scientist, groups of drones may soon be fully operated from the cockpits of advanced fighter jets flying nearby.

This technological advancement would enhance mission scope and effectiveness, enabling F-35 pilots to perform sensing, reconnaissance, and targeting functions with more weapons, sensors, and cargo at their immediate disposal.

“The more autonomy and intelligence you can put on these vehicles, the more useful they will become,” said USAF Chief Scientist Greg Zacharias.

For example, Predator, Reaper, or Global Hawk aircraft could send real-time video feeds to an F-35 cockpit without having to first transmit the information to a ground control station, speeding up the process in fast-moving combat situations where a fighter pilot may need to attack. In addition, drones could be programmed to fly into high-risk areas ahead of manned fighter jets in order to assess an enemy’s aerial defenses—and reducing threats to the pilots in the process.

Together, these advancements are what Zacharias refers to as “decision aide support,” meaning machines (in this instance, the drones) will be able to better interpret and communicate information without human-beings having to manage each individual task. Right now, multiple humans are required to control a single drone, but future algorithms may enable one human to control 10 (or even 100) unmanned aircraft.

Algorithms may one day even advance to the point where a Predator or Reaper could follow a fighter jet without needing personnel to first input the flight path.


“Decision aides will be in cockpit or on the ground and more platform oriented autonomous systems,” Zacharias said. “A wing-man, for instance, might be carrying extra weapons, conduct ISR tasks or help to defend an area.”

Scientists, by way of wargames and computer simulations, are already working on advancing drone autonomy to the point where aircraft can trick an enemy’s radar system, as well as locate and identity targets more quickly and accurately.

“We will get beyond simple guidance and control and will get into tactics and execution,” Zacharias added.

Of course, scientists disagree on whether or not machines can (or should) be programmed to instantly respond to emerging objects or circumstances—threatening or not. Nonetheless, fighter jets (and their human pilots) will still benefit from greater interconnection with drones in order to make better, faster, and safer tactical decisions during missions.



Tuesday, June 7, 2016

FAA Warns of GPS Outages This Month During Mysterious Tests on the West Coast

As reported by GizmodoStarting today, it appears the US military will be testing a device or devices that will potentially jam GPS signals for six hours each day. We say “appears” because officially the tests were announced by the FAA but are centered near the US Navy’s largest installation in the Mojave Desert. And the Navy won’t tell us much about what’s going on.

The FAA issued an advisory warning pilots on Saturday that global positioning systems (GPS) could be unreliable during six different days this month, primarily in the Southwestern United States. On June 7, 9, 21, 23, 28, and 30th the GPS interference testing will be taking place between 9:30am and 3:30pm Pacific time. But if you’re on the ground, you probably won’t notice interference.
The testing will be centered on China Lake, California—home to the Navy’s 1.1 million acre Naval Air Weapons Center in the Mojave Desert. The potentially lost signals will stretch hundreds of miles in each direction and will affect various types of GPS, reaching the furthest at higher altitudes. But the jamming will only affect aircraft above 50 feet. As you can see from the FAA map below, the jamming will almost reach the California-Oregon border at 4o,000 feet above sea level and 505 nautical miles at its greatest range.

I gave the Naval Air Warfare Center Weapons Division a call yesterday, but they couldn’t tell me much.
“We’re aware of the flight advisory,” Deidre Patin, Public Affairs specialist for Naval Air Warfare Center Weapons Division told me over the phone. But she couldn’t give me any details about whether there was indeed GPS “jamming,” nor whether it had happened before. Patin added, “I can’t go into the details of the testing, it’s general testing for our ranges.”
As AVWeb points out, Embraer Phenom 300 business jets are being told to avoid the area completely during the tests. The FAA claims that the jamming test could interfere with the business jet’s “aircraft flight stability controls.”
GPS technology has become so ubiquitous that cheap jamming technology has become a real concern for both military and civilian aircraft. And if we had to speculate we’d say that these tests are probably pulling double duty for both offensive and defensive military capabilities. But honestly, that’s just a guess.
These tests are naturally going to fuel plenty of conspiracy theories about mind control, weather modification, and aliens—especially with China Lake’s proximity to both large population centers like LA and Las Vegas, and the fact that Area 51 is practically just down the road. But it doesn’t take a conspiracy theorist to tell us we’re fucked if terrorists or shitty teenagers make it a habit of jamming GPS signals for everybody.
If you experience any significant GPS interference this month or know the “real” reason behind these test (aliens, right?) please let us know in the comments.